Контрольная работа: Эконометрика

Эти данные скорее всего можно аппроксимировать при помощи линейной регрессии вида ŷ = а - b · x , как самой простой.

Рассчитаем необходимые суммы и запишем их в таблице № 1:

Таблица №1:

i x y x ² y ² x · y ŷ e A (%)
1 2,5 69 6,25 4761 172,5 66,40 2,60 6,75 3,76
2 3 65 9 4225 195 64,85 0,15 0,02 0,23
3 3,4 63 11,56 3969 214,2 63,61 -0,61 0,37 0,97
4 4,1 59 16,81 3481 241,9 61,44 -2,44 5,94 4,13
5 5 57 25 3249 285 58,65 -1,65 2,71 2,89
6 6,3 55 39,69 3025 346,5 54,61 0,39 0,15 0,70
7 7 54 49 2916 378 52,44 1,56 2,43 2,89
Сумма: 31,3 422 157,31 25626 1833,1 422,00 0,00 18,38 15,57
Среднее: 4,471 60,286 22,473 3660,857 261,871 - - - 2,22%

Ковариация между y и x рассчитывается по формуле , где , , . Дисперсия и среднее квадратическое отклонение для x и y находим по формулам:

= 2,479, = 26,490, 1,575, 5,147.

Возможно вы искали - Контрольная работа: Эконометрика 2

= -7,692 / 2,479 = -3,103; = 60,286 + 3,103 · 4,471 = 74,159

Получили уравнение регрессии: ŷ = 74,159 - 3,103·х (округлено до сотых).

Оцениваем качество полученной линейной модели:

а) TSS= 25624 - (31,3²) : 7 = 185,492; RSS = TSS - ESS= 185,429 - 18,38 = 176,051, где ESS= = 18,38 (в таблице №1); F - статистика = RSS · (n - m - 1) : ESS = 176,051 · ·5 :18,38 = 45,45.

Табличное значение на 1% уровне значимости равно 16,26 (см. таблицу распределения Фишера - Снедекора). Фактическое значение F - статистики больше табличного на 1% уровне значимости, следовательно уравнение регрессии в целом значимо и на 5% уровне значимости.

Похожий материал - Курсовая работа: Имитационное моделирование группового обслуживания с несколькими этапами и двойной очередью: работа оптового магазина

б) Средняя ошибка аппроксимации равна (ΣА)/7 = ((ΣIy-ŷI: y) · 100%) / 7 = 15,57 / 7 = =2,22%, что говорит о хорошей аппроксимации зависимости моделью (2,22% < 6%).

Вывод: модель получилась приемлемая (в смысле аппроксимации).

в) Коэффициент корреляции находим по формуле: = -0,949: сильная обратная линейная зависимость.

г) Коэффициент детерминации находим следующим образом: = 0,901 или вариация x определяет вариацию y на 90,1%.

Проверка на соответствие условиям теоремы Гаусса - Маркова

а) По таблице №2 рассчитаем статистику Дарбина - Уотсона:

Очень интересно - Курсовая работа: Имитационное моделирование жизненного цикла товара на примере ООО "Стимул"

Таблица №2

i e e i-1 (e i -e i-1

=16,050 : 18,38 = 0,8734.

1 6,75 2,60 - -
2 0,02 0,15 2,598 5,996
3 0,37 -0,61 0,149 0,576
4 5,94 -2,44 -0,610 3,342
5 2,71 -1,65 -2,438 0,628
6 0,15 0,39 -1,646 4,134
7 2,43 1,56 0,388 1,373
Итого: 18,38 - -1,559 16,050

Полученное значение попадает в область неопределённости: DW (0,7; 1,35). Это значит, что для прояснения вопроса относительно автокорреляции остатков необходимо дальнейшее исследование ряда остатков другими методами, в которых отсутствует зона неопределённости.

б) Воспользуемся тестом серий Бройша - Годфри:

Таблица №3

t e t e t-1 t-1 e t ·e t-1 ê t (y-bx) ²
1 2,598 0,149 0,022 0,387 0,074 6,371
2 0,149 -0,610 0,372 -0,091 -0,302 0,204
3 -0,610 -2,438 5,944 1,487 -1,208 0,358
4 -2,438 -1,646 2,709 4,013 -0,816 2,632
5 -1,646 0,388 0,151 -0,639 0,192 3,379
6 0,388 1,559 2,430 0,605 0,773 0,148
Итого: -1,559 -2,598 11,628 5,763 -1,287 13,092

Вам будет интересно - Курсовая работа: Корреляционный анализ

На основании полученных данных построим уравнение регрессии без свободного члена вида ŷ=b·x. При этом стандартная ошибка коэффициента регрессии b , рассчитанная по формуле:

,

, = 1,181,

что меньше значения t табл. = 2,57. Это означает, что автокорреляция первого уровня отсутствует.

Однако следует отметить, что и тест Дарбина - Уотсона и тест серий Бройша - Годфри применяются только для выборок достаточно большого размера[1] , в то время как предложенная нам для анализа выборка состоит только лишь из семи значений.

Похожий материал - Курсовая работа: Линейное программирование как метод оптимизации

в) При помощи критерия серий проверим случайность распределения уровней ряда остатков. С 95% вероятностью распределение ряда остатков считается случайным, если одновременно выполняются два неравенства:

1)

общее число серий должно быть больше двух, и 2) - максимальная длина серии должна быть строго меньше пяти.

Данные для расчётов получаем из таблицы № 4.