Эти данные скорее всего можно аппроксимировать при помощи линейной регрессии вида ŷ = а - b · x , как самой простой.
Рассчитаем необходимые суммы и запишем их в таблице № 1:
Таблица №1:
i | x | y | x ² | y ² | x · y | ŷ | e | e² | A (%) |
1 | 2,5 | 69 | 6,25 | 4761 | 172,5 | 66,40 | 2,60 | 6,75 | 3,76 |
2 | 3 | 65 | 9 | 4225 | 195 | 64,85 | 0,15 | 0,02 | 0,23 |
3 | 3,4 | 63 | 11,56 | 3969 | 214,2 | 63,61 | -0,61 | 0,37 | 0,97 |
4 | 4,1 | 59 | 16,81 | 3481 | 241,9 | 61,44 | -2,44 | 5,94 | 4,13 |
5 | 5 | 57 | 25 | 3249 | 285 | 58,65 | -1,65 | 2,71 | 2,89 |
6 | 6,3 | 55 | 39,69 | 3025 | 346,5 | 54,61 | 0,39 | 0,15 | 0,70 |
7 | 7 | 54 | 49 | 2916 | 378 | 52,44 | 1,56 | 2,43 | 2,89 |
Сумма: | 31,3 | 422 | 157,31 | 25626 | 1833,1 | 422,00 | 0,00 | 18,38 | 15,57 |
Среднее: | 4,471 | 60,286 | 22,473 | 3660,857 | 261,871 | - | - | - | 2,22% |
Ковариация между y и x рассчитывается по формуле , где , , . Дисперсия и среднее квадратическое отклонение для x и y находим по формулам:
= 2,479, = 26,490, 1,575, 5,147.
Возможно вы искали - Контрольная работа: Эконометрика 2
= -7,692 / 2,479 = -3,103; = 60,286 + 3,103 · 4,471 = 74,159
Получили уравнение регрессии: ŷ = 74,159 - 3,103·х (округлено до сотых).
Оцениваем качество полученной линейной модели:
а) TSS= 25624 - (31,3²) : 7 = 185,492; RSS = TSS - ESS= 185,429 - 18,38 = 176,051, где ESS= = 18,38 (в таблице №1); F - статистика = RSS · (n - m - 1) : ESS = 176,051 · ·5 :18,38 = 45,45.
Табличное значение на 1% уровне значимости равно 16,26 (см. таблицу распределения Фишера - Снедекора). Фактическое значение F - статистики больше табличного на 1% уровне значимости, следовательно уравнение регрессии в целом значимо и на 5% уровне значимости.
Похожий материал - Курсовая работа: Имитационное моделирование группового обслуживания с несколькими этапами и двойной очередью: работа оптового магазина
б) Средняя ошибка аппроксимации равна (ΣА)/7 = ((ΣIy-ŷI: y) · 100%) / 7 = 15,57 / 7 = =2,22%, что говорит о хорошей аппроксимации зависимости моделью (2,22% < 6%).
Вывод: модель получилась приемлемая (в смысле аппроксимации).
в) Коэффициент корреляции находим по формуле: = -0,949: сильная обратная линейная зависимость.
г) Коэффициент детерминации находим следующим образом: = 0,901 или вариация x определяет вариацию y на 90,1%.
Проверка на соответствие условиям теоремы Гаусса - Маркова
а) По таблице №2 рассчитаем статистику Дарбина - Уотсона:
Очень интересно - Курсовая работа: Имитационное моделирование жизненного цикла товара на примере ООО "Стимул"
Таблица №2
i | e² | e | e i-1 | (e i -e i-1 )² |
=16,050 : 18,38 = 0,8734. |
1 | 6,75 | 2,60 | - | - | |
2 | 0,02 | 0,15 | 2,598 | 5,996 | |
3 | 0,37 | -0,61 | 0,149 | 0,576 | |
4 | 5,94 | -2,44 | -0,610 | 3,342 | |
5 | 2,71 | -1,65 | -2,438 | 0,628 | |
6 | 0,15 | 0,39 | -1,646 | 4,134 | |
7 | 2,43 | 1,56 | 0,388 | 1,373 | |
Итого: | 18,38 | - | -1,559 | 16,050 |
Полученное значение попадает в область неопределённости: DW (0,7; 1,35). Это значит, что для прояснения вопроса относительно автокорреляции остатков необходимо дальнейшее исследование ряда остатков другими методами, в которых отсутствует зона неопределённости.
б) Воспользуемся тестом серий Бройша - Годфри:
Таблица №3
t | e t | e t-1 | e² t-1 | e t ·e t-1 | ê t | (y-bx) ² |
1 | 2,598 | 0,149 | 0,022 | 0,387 | 0,074 | 6,371 |
2 | 0,149 | -0,610 | 0,372 | -0,091 | -0,302 | 0,204 |
3 | -0,610 | -2,438 | 5,944 | 1,487 | -1,208 | 0,358 |
4 | -2,438 | -1,646 | 2,709 | 4,013 | -0,816 | 2,632 |
5 | -1,646 | 0,388 | 0,151 | -0,639 | 0,192 | 3,379 |
6 | 0,388 | 1,559 | 2,430 | 0,605 | 0,773 | 0,148 |
Итого: | -1,559 | -2,598 | 11,628 | 5,763 | -1,287 | 13,092 |
Вам будет интересно - Курсовая работа: Корреляционный анализ
На основании полученных данных построим уравнение регрессии без свободного члена вида ŷ=b·x. При этом стандартная ошибка коэффициента регрессии b , рассчитанная по формуле:
,
, = 1,181,
что меньше значения t табл. = 2,57. Это означает, что автокорреляция первого уровня отсутствует.
Однако следует отметить, что и тест Дарбина - Уотсона и тест серий Бройша - Годфри применяются только для выборок достаточно большого размера[1] , в то время как предложенная нам для анализа выборка состоит только лишь из семи значений.
Похожий материал - Курсовая работа: Линейное программирование как метод оптимизации
в) При помощи критерия серий проверим случайность распределения уровней ряда остатков. С 95% вероятностью распределение ряда остатков считается случайным, если одновременно выполняются два неравенства:
1)
общее число серий должно быть больше двух, и 2) - максимальная длина серии должна быть строго меньше пяти.
Данные для расчётов получаем из таблицы № 4.