Анализ поступательного движения одной частицы в замкнутом пространстве принадлежит к числу простейших примеров систематического применения квантовой механики к решению важных химических и физических проблем. В их числе термодинамические свойства идеального газа, спектроскопия электронных переходов у сопряженных органических красителей, электронные свойства кристаллов и др.
Рассмотрим следующую модель, называемую потенциальным “ящиком”.
3.1.1. Вообразим, что на ограниченном интервале 0<x <l движется частица с массой m, которая не может покинуть пределы интервала из-за того, что на его границах потенциальная энергия скачкообразно возрастает до бесконечно большого значения. Это условие эквивалентно тому, что интервал ограничен идеально отражающими стенками. Поскольку потенциальная энергия частицы внутри интервала 0L конечна и, следовательно, несоизмеримо меньше, чем высота стенок, можно положить ее равной нулю. Таким образом, математическая постановка задачи может быть оформлена так, как показано на рис. 2 и записано формулами (3.1) и (3.2):
Возможно вы искали - Реферат: Отчет по производстенной практике
3.1.2. Составим уравнение Шредингера для частицы в “ящике”. Поскольку на интервале (0,L) U(x)=0, то в составе гамильтониана остается только оператор кинетической энергии:
(3.3)
а уравнение Шредингера приобретает вид:
(3.4)
Соберем все постоянные в правой части равенства и введем обозначение:
Похожий материал - Реферат: тичної статистики теоретичного аналізу теорії імовірності системного аналізу економетрії
, (3.5)
т.е. заменим энергию пропорциональной ей величиной ε, отличающейся от энергии только постоянным множителем, и получим уравнение известной формы:
, (3.6)
3.1.3. Это дифференциальное однородное линейное уравнение 2-го порядка с постоянным коэффициентом ε, который сразу удобно представить как квадрат некоторого параметра k, т.е.
Очень интересно - Реферат: Характеристика озброєння армії країн НАТО
. (3.7)
Частные решения этого уравнения имеют вид экспонент с комплексными показателями или тригонометрических функций:
, (3.8)
а общее – их линейных комбинаций:
, (3.9)
Вам будет интересно - Реферат: Планетыгиганты Плутон
где . (3.10)
3.1.4. Общее решение уравнения еще не является волновой функцией. Для того, чтобы такое превращение произошло, необходимо проверить совместимость полученного решения со всеми требованиями, предъявляемыми к волновой функции, и привести его в соответствие с ними:
требованию неразрывности удовлетворяют обе тригонометрические составляющие и общее решение – также;
требованию конечности решение тоже удовлетворяет, поскольку оно не может превышать величину (А+В) и не может быть меньше, чем –(А+В) . Это связано с тем, что функции sin ( x ) и cos ( x ) изменяются в пределах –1 до 1;
Похожий материал - Реферат: Самолет Сикорский С-16
однозначности решения (3.9) нет, пока не определена точка отсчета. Поэтому введем граничные условия, а именно:
, (3.11)
, (3.12)
Эти условия означают, что волновая функция исчезает на границах интервала, вне которого система не существует. Из уравнений (3.9) и (3.11) следует, что