Курсовая работа: Математическая модель в пространстве состояний линейного стационарного объекта управления

СОДЕРЖАНИЕ

1. Анализ объекта управления

1.1 Анализ линейного стационарного объекта управления, заданного передаточной функцией

1.2 Получение математической модели в пространстве состояний линейного стационарного объекта управления, заданного передаточной функцией

1.2.1 Матрица Фробениуса

Возможно вы искали - Контрольная работа: Математическая модель экономики посредников

1.2.2 Метод параллельной декомпозиции

2. Решение задачи быстродействия симплекс-методом

3. Оптимальная l – проблема моментов

3.1 Оптимальная l – проблема моментов в пространстве «вход-выход»

3.2 Оптимальная l – проблема моментов в пространстве состояний

Похожий материал - Контрольная работа: Математическая статистика

4. Нахождение оптимального управления с использованием грамиана управляемости (критерий – минимизация энергии)

5. Аналитическое конструирование оптимальных регуляторов (акор)

5.1 Стабилизации объекта управления на полубесконечном интервале времени

5.1.1 Решение алгебраического уравнения Риккати методом диагонализации

5.1.2 Решение алгебраического уравнения Риккати интегрированием в обратном времени до установившегося состояния

Очень интересно - Курсовая работа: Математические методы в решении экономических задач

5.2 Стабилизации объекта управления на конечном интервале времени

5.3 Задача акор – стабилизации для компенсации известного возмущающего воздействия.

5.4 Задача акор для отслеживания известного задающего воздействия. i подход

5.5 Задача акор для отслеживания известного задающего воздействия. ii подход (линейный сервомеханизм)

5.6 Задача акор – слежения со скользящими интервалами.

Вам будет интересно - Контрольная работа: Математические методы в экономике

6. Синтез наблюдателя полного порядка

Литература

Приложение

PlotTimeFrHaract.m

ProstranstvoSostoyanii.m

Похожий материал - Реферат: Математические методы в экономике 3

SimplexMetod2.m

Optimal_L_problem_moments.m

Gramian_Uprav.m

AKOR_stabilizaciya_na_polybeskon_interval.m