29.10.1995 г.
Школа # 1278, кл. 11 “В”.
Движения. Преобразования фигур.
При создании реферата были использованы следующие книги:
1. “Геометрия для 9-10 классов”. А.Д.Александров, А.Л.Вернер, В.И.Рыжик.
2. “Геометрия”. Л.С.Атанасян, В.Ф.Бутузов, С.Б.Кадомцев и др.
Возможно вы искали - Реферат: Магнитные свойства вещества. Ферромагнетики. Применение ферромагнетиков
3. “Математика”. В.А.Гусев, А.Г.Мордкович.
Все рисунки находятся на отдельном листе, приложенном к реферату. Решения задач также на отдельном листе. Доказательства основных теорем, связанных с движением, я также привожу на отдельных листках. В реферате - только определения и классификация.
Движением в геометрии называется отображение, сохраняющее расстояние. Следует разъяснить, что подразумевается под словом “отображение”.
1. Отображения, образы, композиции отображений.
Отображением множества M в множество N называется соответствие каждому элементу из M единственного элемента из N.
Мы будем рассматривать только отображение фигур в пространстве. Никакие другие отображения не рассматриваются, и потому слово “отображение” означает соответствие точкам точек.
Похожий материал - Курсовая работа: Расчет параметров электрических цепей постоянного тока средствами EXCEL
О точке X’, соответствующей при данном отображении f точке X, говорят, что она является образом точки X, и пишут X’ = f(X). Множество точек X’, соответствующих точкам фигуры M, при отображении f называется образом фигуры M и обозначается M’ = f(M).
Если образом M является вся фигура N, т.е. f(M) = N, то говорят об отображении фигуры M на фигуру N.
Отображение называется взаимно однозначным , если при этом отображении образы каждых двух различных точек различны.
Пусть у нас есть взаимно однозначное отображение f множества M на N. Тогда каждая точка X’ множества N является образом только одной (единственной) точки X множества M. Поэтому каждой точке X’ Ì N можно поставить в соответствие ту единственную точку X Ì M, образом которой при отображении f является точка X’. Тем самым мы определим отображение множества N на множество M, оно называется обратным для отображения f и обозначается f. Если отображение f имеет обратное, то оно называется обратимым.
Неподвижной точкой отображения j называется такая точка A, что
Очень интересно - Курсовая работа: Расчет параметров электрических цепей постоянного тока средствами EXCEL
j(A) = A.
Из данных определений непосредственно следует, что если отображение f обратимо, то обратное ему отображение f также обратимо и (f ) = f. Поэтому отображения f и f называются также взаимно обратными.
Пусть заданы два отображения: отображение f множества M в множество N и отображение g множества N в множество P. Если при отображении f точка
X Ì N перешла в точку X’ = f(X) Ì N, а затем X’ при отображении g перешла в точку X’’ Ì P, то тем самым в результате X перешла в X’’ (рис.1).
В результате получается некоторое отображение h множества M в множество P. Отображение h называется композицией отображения f с последующим отображением g.
Вам будет интересно - Реферат: Расчет электрических цепей постоянного тока
Если данное отображение f обратимо, то, применяя его, а потом обратное ему отображение f , вернем, очевидно, все точки в исходное положение, т.е. получим тождественное отображение , такое, которое каждой точке сопоставляет эту же точку.
2. Определение движения.
Движением (или перемещением) фигуры называется такое ее отображение, при котором каждым двум ее точкам A и B соответствуют такие точки A’ и B’, что |A’B’| = |AB|. (рис.2).
Тождественное отображение является одним из частных случаев движения .
Фигура F’ называется равной фигуре F, если она может быть получена из F движением.
Похожий материал - Реферат: Электромеханика
3. Общие свойства движения.
Свойство 1 (сохранение прямолинейности ).
При движении три точки, лежащие на прямой, переходят в три точки, лежащие на прямой, причем точка, лежащая между двумя другими, переходит в точку, лежащую между образами двух других точек (сохраняется порядок их взаимного расположения).
Доказательство. Из планиметрии известно, что три точки A, B, C лежат на прямой тогда и только тогда, когда одна из них, например точка B, лежит между двумя другими - точками A и C, т.е. когда выполняется равенство
|AB| + |BC| = |AC|.