1.Счетные и несчетные множества. Счетность множества рациональных чисел.
Множество - совокупность некоторых объектов
Элементы множества - объекты составляющие множество
Числовые множества - множества элементами которых являются числа.
Задать множество значит указать все его элементы:
Возможно вы искали - Реферат: Математический анализ
1 Способ: А={а: Р(а)} эти записи Читать- множество тех а таких что...
A={а-Р(а)} равноценны
Р(а) - предикат = высказывание об элементе, бывает ложно или истинно по отношению к кокретному элементу. Множество А состоит из тех а для которых предикат истина.
2 Способ : Конструирование из других множеств:
AÚB = {c: cÎA Ú cÎB}, AÙB = {c: cÎA Ù cÎB}, A\ B = {c: cÎA Ù сÏB}
Похожий материал - Реферат: Математический анализ. Регрессия
U - универсальное множество (фиксированное)
U³A; U \ A = A’ = cA (A’ - дополнение множества A)
Свойства:
1. AÚ(BÚC)=(AÚB) ÚC - ассоциативность; AÚB=BÚA - коммутативность; AÚÆ=A; AÚU=U
2. AÚ (BÙC)=(AÚB) Ù(AÚC) & AÙ (BÚC)=(AÙB) Ú(AÙC) - дистрибутивность; АÙÆ=А
Очень интересно - Реферат: Математическое выражение музыки
A” =A - закон исключающий третьего (AÚB)’=A’ÙB’; (AÙB)’=A’ÚB’; AÙA’= Æ
Иллюстрация свойств: Диаграммы Эйлера-Венна.
"=>" cÎ(AÚB)’ => cÏAÚB => cÏA & cÏB => cÎ A’ & cÎB’ => cÎA’ÙB’
"<=" cÎA’ÙB’ => cÎA’ & cÎB’ => cÏA & cÏB => cÏAÚB => cÎ(AÚB)’
Отображение множеств:
Вам будет интересно - Реферат: Математический факультатив как ведущая форма профессиональной дифференциации в преподавании математики в средней школе
f:A®B (на множестве А задано отображение f со значением множества B)
aÎA; bÎB => b - образ элемента а при отображении f; a - прообраз элемента b при отображении f
Так как для каждого элемента из А ставится в соответствие элемент из В, значит А - область определения (Dom f=А), а область значенийB (Im f £B)
Для отображения задают: 1) способ 2) Dom 3) Im
Отображение f инъективно если f(x)=f(x’) => x=x’(разные переходят в разные)
Похожий материал - Реферат: Математическое моделирование
Отображение f сурьективно если Im f =B(каждый переходит в каждый)
Если же отображение инъективно+сурьективно, то множества равномощны(содержат одинаковое кол-во элементов), а отображение биективно - взаимооднозначно.
Счетные множества - множества равномощные множеству натуральных чисел (N)
Теорема: Множество Q счетно.