Реферат: Скалярная проекция гиперкомплексных чисел

Каратаев Е.А.

Введение.

При первой же попытке рассмотрения гиперкомплексных чисел в качестве основания для соответствующей геометрии возникает желание найти в гиперкомплексных числах аналоги геометрических понятий. И одной из первых трудностей становится поиск аналога скалярного произведения. Если в геометрии есть проекция отрезка, в векторной алгебре есть скалярное произведение, то чему же это понятие соответствует в гиперкомплексных числах?

Стремление к общности определения наталкивается на ряд понятий, которые оказались введены в классическом подходе в виде, как говорят студенты, “подгонки”. И скалярное произведение, и сопряжение, как оказалось, были введены в математику аксиоматически и теоремы, использоваашие их определение, естественным образом подтвердили их свойства, вытекающие однозначным образом из их определения.

Классическая форма (билинейная форма) была использована, например, в теореме Гурвица и тем самым было введено ограничение на набор рассматриваемых алгебр. Дальнейшие попытки развития теории гиперкомплексных алгебр пошли не по пути рассмотрения свойств алгебр, образующихся путем удвоения и использования этих свойств, а по пути рассмотрения алгебр над полями со все более глубокой их структуризацией.

Мне хотелось бы до конца выяснить вопрос - что является аналогом скалярного произведения в гиперкомплексных числах и, сравнив два подхода, выяснить, где находятся белые пятна классического подхода. И скромно предположить направление исследований, которое может дать, возможно, полезные в технике и физике результаты.

Возможно вы искали - Доклад: Теория измерений:типы шкал

Скалярное же произведение в классической геометрии, определяемое в виде билинейной формы, к гиперкомплексным числам не подходит в общем случае, поскольку автоматически означает и требование билинейности квадрата модуля. А таким требованиям отвечает меньшая часть алгебр. Остальные имеют определение 4-й степени модуля в виде 4-х линейной формы, или, возможно, еще более высокого порядка.

В этой статье и предпринимается попытка отыскания формально общего определения скалярного произведения в форме, допускающей его применение к таким алгебрам с 4-х линейными формами.

1. Классический подход.

Возьмем на плоскости два вектора

Похожий материал - Реферат: Организация непрерывных LOD ландшафтов с использованием Адаптивных КвадроДерьев

Обозначим концы данных векторов соответственно через X и Y. Из формулы для расстояния между двумя точками имеем:

откуда следует

Очень интересно - Реферат: Окружение и локализация корня нелинейной функции действительной переменной

(1)

Из этого равенства, если учесть теорему Пифагора, легко увидеть, что необходимым и достаточным условием перпендикулярности и является

Заметим, что если это же рассуждение применить к векторам не на плоскости, а в пространстве, то получим условие перпендикулярности в аналогичной форме:

Вам будет интересно - Реферат: Фракталы и автоколебания в геоморфосистемах

Формула (1) наводит на мысль связать с каждой парой векторов и на плоскости число

(2)

а в пространстве - число

(2’)

Это число в геометрии называют скалярным произведением векторов и и обозначают (x,y). Заметим, что длина произвольного вектора x выражается через скалярное произведение. А именно, в случае плоскости

Похожий материал - Реферат: Об энтропийной оценке сверхпластичности

а в случае пространства

Вышеприведенный ход рассуждений взят из книги [1] и является своего рода образцом. Отмечу еще раз, что скалярное произведение вводится на основе теоремы Пифагора, а не наоборот, как иногда пытаются доказать ленивые студенты.