Реферат: Титановые сплавы

Содержание.. - 1 -

Титан и его модификации. - 2 -

Структуры титановых сплавов. - 2 -

Особенности титановых сплавов. - 3 -

Влияние примесей на титановые сплавы. - 4 -

Возможно вы искали - Реферат: Трубы электросварные из коррозионно-стойкой стали

Основные диаграммы состояния. - 5 -

Пути повышения жаропрочности и ресурса. - 7 -

Повышение чистоты сплавов. - 8 -

Получение оптимальной микроструктуры. - 8 -

Повышение прочностных свойств термической обработкой. - 8 -

Похожий материал - Реферат: Управление термическим цехом

Выбор рационального легирования. - 10 -

Стабилизирующий отжиг. - 10 -

Используемая литература. - 12 -

Титан и его модификации.

Титан является переходным металлом и имеет недостроенную d-оболочку. Он находится в четвертой группе Периодической таблицы Менделеева, имеет атомный номер 22, атомную массу 47,90 (изотопы: 46 - 7,95%; 48 - 73,45%; 49 - 5,50% и 50 - 5,35%). Титан имеет две аллотропические модификации: низкотемпературную α-модификацию, имеющую гексагональную атомную ячейку с периодами а=2,9503±0,0003 Ǻ и с=4,6830±0,0005 Ǻ и соотношением с/а=1,5873±0,0007 Ǻ и высокотемпературную β - модификацию с объемно центрированной кубической ячейкой и периодом а=3,283±0,003 Ǻ. Температура плавления титана, полученного методом иодидного рафинирования, равна 1665±5°С.

Структуры титановых сплавов.

Титан подобно железу является полиморфным металлом и имеет фазовое превращение при температуре 882°С. Ниже этой температуры устойчива гексагональная плотноупакованная кристаллическая решетка α-титана, а выше – объемно центрированная кубическая (о. ц. к.) решетка β-титана.

Очень интересно - Реферат: Участок по изготовлению изделий из безвольфрамовых твердых сплавов на основе карбида титана

Титан упрочняется легированием α- и β-стабилизирующими элементами, а также термической обработкой двухфазных (α+β)-сплавов. К элементам, стабилизирующим α-фазу титана, относятся алюминий, в меньшей степени олово и цирконий. α-стабилизаторы упрочняют титан, образуя твердый раствор с α-модификацией титана.

За последние годы было установлено, что, кроме алюминия, существуют и другие металлы, стабилизирующие α-модификацию титана, которые могут представлять интерес в качестве легирующих добавок к промышленным титановым сплавам. К таким металлам относятся галлий, индий, сурьма, висмут. Особый интерес представляет галлий для жаропрочных титановых сплавов благодаря высокой растворимости в α - титане. Как известно повышение жаропрочности сплавов системы Ti – Alограничено пределом 7 – 8% вследствие образования хрупкой фазы. Добавкой галлия можно дополнительно повысить жаропрочность предельнолегированных алюминием сплавов без образования α2-фазы.

Алюминий практически применяется почти во всех промышленных сплавах, так как является наиболее эффективным упрочнителем, улучшая прочностные и жаропрочные свойства титана. В последнее время наряду с алюминием в качестве легирующих элементов применяют цирконий и олово.

Цирконий положительно влияет на свойства сплавов при повышенных температурах, образует с титаном непрерывный ряд твердых растворов на основе α – титана и не участвует в упорядочении твердого раствора.

Олово, особенно в сочетании с алюминием и цирконием, повышает жаропрочные свойства сплавов, но в отличие от циркония образует в сплаве упорядоченную фазу .

Вам будет интересно - Реферат: Хромирование в машиностроении

Преимущество титановых сплавов с α-структурой – в высокой термической стабильности, хорошей свариваемости и высоком сопротивлении окислению. Однако сплавы типа α чувствительны к водородной хрупкости ( вследствие малой растворимости водорода в α-титане) и не поддаются упрочнению термической обработкой. Высокая прочность, полученная за счет легирования, сопровождается низкой технологической пластичностью этих сплавов, что вызывает ряд трудностей в промышленном производстве.

Для повышения прочности, жаропрочности и технологической пластичности титановых сплавов типа α в качестве легирующих элементов наряду с α-стабилизаторами применяются элементы, стабилизирующие β-фазу.

Элементы из группы β-стабилизаторов упрочняют титан, образуя α- и β-твердые растворы.

В зависимости от содержания указанных элементов можно получить сплавы с α+β- и β-структурой.

Таким образом, по структуре титановые сплавы условно делятся на три группы: сплавы с α-, (α+β)- и β-структурой.

Похожий материал - Реферат: Черная металлургия Казахстана

В структуре каждой группы могут присутствовать интерметаллидные фазы.

Преимущество двухфазных (α+β)-сплавов – способность упрочняться термической обработкой (закалкой и старением), что позволяет получить существенный выигрыш в прочности и жаропрочности.

Особенности титановых сплавов.

Одним из важных преимуществ титановых сплавов перед алюминиевыми и магниевыми сплавами является жаропрочность, которая в условиях практического применения с избытком компенсирует разницу в плотности (магний 1,8, алюминий 2,7, титан 4,5). Превосходство титановых сплавов над алюминиевыми и магниевыми сплавами особенно резко проявляется при температурах выше 300°С. Так как при повышении температуры прочность алюминиевых и магниевых сплавов сильно уменьшается, а прочность титановых сплавов остается высокой.

Титановые сплавы по удельной прочности (прочности, отнесенной к плотности) превосходят большинство нержавеющих и теплостойких сталей при температурах до 400°С – 500°С. Если учесть к тому же, что в большинстве случаев в реальных конструкциях не удается полностью использовать прочность сталей из-за необходимости сохранения жесткости или определенной аэродинамической формы изделия (например, профиль лопатки компрессора), то окажется, что при замене стальных деталей титановыми можно получить значительную экономию в массе.