Реферат: Дискретизация и квантование изображений

ИСТОРИЧЕСКИЙ ОЧЕРК.

Еще с середины 40-ых годов , специалисты по радиоэлектроники начали задумываться над возможностью применения специализированных цифровых устройств для решения разнообразных задач ,связанных с обработкой сигналов . Нечего и говорить , что в то время выводы не были благоприятными . С точки зрения стоимости, размеров и надежности предпочтение следовало отдать аналоговой фильтрации и аналоговым методам спектрального анализа . В 50-ых годах теория управления , частично основанная на работе Гуревича ( 1945 г.) , уже утвердилась как самостоятельное научное направление ; были глубоко изучены принципы дискретизации колебаний и возникающие при этом спектральные эффекты , а математический аппарат теории z-преобразования , существовавший еще со времен Лапласа , начал находить применение в радиоэлектроники и смежных дисциплинах . Однако достигнутый уровень развития техники позволял получить практические результаты только в задачах управления медленными процессами и обработке низкочастотных сейсмических сигналов . К середине 60-ых годов были оценены потенциальные возможности интегральных микросхем , что позволило представить полную систему обработки сигналов , для которых наилучшая техническая реализация была бы именно цифровой .

Первый крупный вклад в теорию цифровой обработки сигналов , касающийся анализа и синтеза цифровых фильтров , был сделан Кайзером ( фирма Bell ) ; он показал , как можно рассчитывать цифровые фильтры с нужными характеристиками , используя билинейное преобразование . Примерно тогда же ( 1965 г.) появилась статья Кули и Тьюки о быстром методе вычисления дискретного преобразования Фурье , давшая мощный толчек развитию этого нового технического направления . Позже метод был развит и стал широко известен как быстрое преобразование Фурье ( БПФ ) . Ценность этого метода заключается в сокращении времени вычисления дискретного преобразования Фурье ( на один-два порядка для большинства практических задач ). Опубликование статьи Кули и Тьюки ускорило развитие строгой и достаточно полной теории цифровой фильтрации . Важнейшее значение метода БПФ состояло в том , что он наглядно продемонстрировал , насколько цифровые методы при спектральном анализе могут оказаться экономичнее аналоговых . После создания метода БПФ интенсивность исследований в области цифровой фильтрации резко возросла , и в настоящее время цифровые методы широко используются для спектрального анализа самых разнообразных сигналов , начиная с низкочастотных колебаний в сейсмологии и звуковых колебаний в гидрологии и при анализе речи и кончая видеосигналами в радиолокации .

Первой попыткой исчерпывающего изложения теории цифровой обработки сигналов была книга Гоулда и Рэйдера ( 1969 г.) . Эту книгу применяли в качестве учебного пособия для аспирантов, и как руководство для инженеров ,работающих в промышленности . Естественно , что книга не могла удовлетворить и тех и других . Не нужно доказывать , что хорошее учебное пособие может быть составленно только на основе курса , читавшегося в течении по крайней мере несколько лет , и подходящего набора задач .

ПРИЧИНЫ ВНЕДРЕНИЯ ЦОС В

Возможно вы искали - Реферат: Дифференциальный каскад

ЭЛЕКТРОСВЯЗЬ.

1. Сложность ( нередко невозможность ) решения некоторых задач аналоговым методом .

2. Прогресс в развитии электроники ( создание высокоскоростных многоразрядных АЦП , разработка сигнальных процессоров ) .

3. ЦОС позволяет реализовать универсальные модемы , в которых изменением программы осуществляется переход с одного вида сигнала на другой ( т.е. с одной модуляции на другую ).

4. ЦОС позволяет строить адаптивные радиоприемные устройства, работающие во все усложняющейся электромагнитной обстановке ( т.е. спектр постоянно загружается сигналами ) .

Похожий материал - Реферат: Задача обработки решеток

5. Простота , автоматически сменных , алгоритмов ЦОС и высокая точность их реализации .

6. ЦОС позволяет реализовать более сложные алгоритмы радио приема ( разнесенный прием , компенсация и подавление сосредоточенных помех и прием в целом ) .

7. При использование ЦОС значительно меньше влияет разброс параметров и действие дестабилизирующих факторов.

8. Высокая интеграция цифровых микросхем позволяет реализовать очень сложные алгоритмы приема сигналов , сохраняя приемлемый объем и стоимость аппаратуры .

9. Цифровая аппаратура легко поддается миниатюризации. Высокая технологичность и отсутствие регулировки понижает стоимость.

Очень интересно - Реферат: Затухание ЭМВ при распространении в средах с конечной проводимостью

10.Проектирование цифровых устройств легче чем аналоговых и поддается автоматизации ( легко модулируются на ЭВМ ) .

11.ЦОС облегчает работу по созданию спецэфектов на ТВ ( работа режиссеров на теле-студии ) .

12.ЦОС позволяет существенно повысить качество изображения.

ПРОБЛЕМЫ РАЗВИТИЯ ЦОС .

1. Для ЦОС необходимо преобразовать аналоговый сигнал в цифровой ( требуется достаточно большой уровень сигнала - порядка 1в ) .

Вам будет интересно - Реферат: Звук

2. Преобразование аналогово сигнала в цифровой приводит к появлению погрешности дискретизации во времени и к погрешности квантования по уровню ( специфические погрешности ) .

3. Процесс обработки сигналов сопровождается погрешностями , вызванными округлениями результатов ( это приводит к ошибкам - шумам ) .

4.Требуется увеличение динамического диапазона и ширины спектра преобразуемых аналоговых сигналов ( т.к. каналы с ограниченной полосой пропускания и сложной помеховой обстановкой ) . Чтобы достигнуть возможности аналоговой техники нужно иметь динамический диапазон АЦП 120-130 дб с df=100 кГц . Таких АЦП пока нет . Реализуемый при df=100 кГц динамический диапазон АЦП 70-80 дб . Для широкополосных сигналов при df=100 Мгц динамический диапазон 6-24 дб .

5. Низкая скорость работы цифровых вычислительных устройств. (Сигнальные процессоры : КМ1813ВЕ11 , ТМS320.10 , ТМS320.20 , ТМS320.30 , ДSР5600 , ТМS320.50 .)

ТЕОРЕМА КОТЕЛЬНИКОВА .

Похожий материал - Реферат: ИМПУЛЬСНЫЙ УСИЛИТЕЛЬ

Любой сигнал с ограниченным спектром ( бесконечный во времени ) однозначно определяется своими отсчетами , взятыми через интервал времени dt=1/2F т.е.

, где u(kDt)-аналоговая величина;

Эта теорема утверждает , что если сигнал f(t) имеет преобразование Фурье Sf(w) отличное от нуля при частотах меньших 2pFm . То в отсчетах сигнала f(kDt) взятых через интервал Dt=1/2Fm содержится вся информация о непрерывной функции f(t) . Из теоремы следует , что эти отсчеты содержат информацию о сигнале f(t) в любой момент времени . Однако частота отсчетов должна быть по крайней мере в два раза больше высшей частоты сигнала Fm .

Доказательство.: