Реферат: Задача обработки решеток

Введение

3

1.1 Задача обработки решетки

5

1.2 Продолжаемость

9

1.2.1 Спектральные основы и совместные множества

9

1.2.2 Сопряженно-симметричные функции и их векторное представление

10

Возможно вы искали - Реферат: Затухание ЭМВ при распространении в средах с конечной проводимостью

1.2.3 Õàðàêòåðèñòèêè ïðîäîëæàåìîñòè

11

1.3 Граница и внутренняя часть

15

1.3.1 Функции спектральной плотности мощности

15

1.3.2 Дискретизация спектральной основы

16

1.4 Метод Писаренко

18

Похожий материал - Реферат: Звук

1.4.1 Метод Писаренко для решеток датчиков

18

1.4.2 Вычисление оценки Писаренко

22

Резюме

25

2.1. Интегральное уравнение для открытого резонатора с осесимметричным диском

26

2.2 Интегральное уравнение открытого резонатора с диэлектрическим диском, несоосным с зеркалами [72]

32

Очень интересно - Реферат: ИМПУЛЬСНЫЙ УСИЛИТЕЛЬ

Заключение, перспективы

39

3 Метод СВЧ контроля параметров полимеров

40

Литература

45

ПриложениЯ

47

Приложение А

48

Вам будет интересно - Реферат: Избыточные коды

Приложение В

50

Приложение С

52

Иллюстрации

54

Рассматривается вкратце задача обработки решеток и формулируется задача абстрактной спектральной оценки. Эта задача включает оценку многомерного спектра мощности частотно-волнового вектора по измерениям корреляционной функции и знанию спектральной основы.

Исследование согласующихся по корреляции спектральных оценок приводит к вопросу продолжаемости : существует ли любой положительный спектр на спектральной основе, который в точности согласует данное множество корреляционных выборок? Для ответа на этот вопрос разработана математическая структура, в рамках которой следует анализировать и разрабатывать алгоритмы спектральной оценки.

Похожий материал - Реферат: Измерение параметров АЦП

Метод спектральной оценки Писаренко, который моделирует спектр в виде импульсов плюс шумовая компонента, распространяется со случая временной последовательности на более общий случай обработки решеток. Оценку Писаренко получают как решение линейной задачи оптимизации, которая может быть решено при использовании линейного алгоритма программирования, к примеру, симплекс - метода.

Введение

Подобно тому, как спектр мощности стационарной временной последовательности описывает распределение мощности в зависимости от частоты, спектр мощности частотно-волнового вектора однородного и стационарного волнового поля описывает распределение мощности в зависимости от волнового вектора и временной частоты или, что эквивалентно, в зависимости от направления распространения и временной частоты. Спектр частота - волновой вектор или информация, которая может быть получена из него, является важной во многих применениях. В радиоастрономии и гидролокации могут быть основаны на информации, содержащейся в оценке спектра мощности. Следовательно, оценка спектра мощности по данным решетки датчиков представляет больной практический интерес.

Раздел II содержит краткий обзор волновых нолей и решеток датчиков, а также введение в задачу спектральной оценки. Рассматриваются альтернативные математические представления спектров мощности, как мер и как функций спектральной плотности. В разделе II вводится термин корешетки, множества разделений вектора и временных запаздываний, для которых доступны корреляционные выборки, и спектральной основы, области частоты-пространства волнового, вектора, содержащей мощность. к которой чувствительны датчики. Никакой особой структуры не предполагается как и для корешетки. Так и для спектральной основы. Раздел II завершается Формулировкой абстрактной задачи: оценкой спектра мощности при условии того, что он положителен на спектральной основе и равен нулю вне ее, а также обладает некоторыми известными корреляциями для разделений в корешетке. Хотя и проще многих задач, встречаемых на практике, ключевые характеристики, которые отличают задачу решетки, от задачи спектральной оценки мощности временной последовательности, сохраняются : многомерность частотной переменной и неравномерность корешетки.

При условии этой формулировки проблемы естественно рассматривать спектральные оценки, которые согласуются с известной информацией: спектральные оценки, положительные на спектральной основе и равные нулю вне её, в точности согласующиеся с измеренными корреляциями, .исследование таких, согласованных с корреляцией, спектральных оценок ставит два главных вопроса. Первый и более фундаментальный вопрос касается существования любой такой оценки. Эта проблема, продолжаемости имеет глубокие исторические корни [1] и недавно была поднята Дикинсоном [2] относительно двумерной спектральной оценки по методу максимальной энтропии, а также является темой некоторых недавних работ Цибенко[3 - 4]. Проблема продолжаемости исследуется в разделе III. Характеризуются продолжаемые множества корреляционных измерений. Рассматривается также их зависимость от спектральной основы и эффект дискретизации спектральной основы. В попытке ответить на вопрос о продолжаемости разработана необходимая математическая структура, позволяющая анализировать специальные методы спектральной оценки и разрабатывать алгоритмы для их вычисления.