В проблемах прогноза и оценки социальных, экологических, экономических мероприятий часто нужно моделировать динамику взаимодействия системы с его окружением (по обмену ресурсами). Здесь важны эффективные методы и критерии оценки адеватности моделей, которые направлены не столько на максимизацию критериев рациональности (например, прибыли, рентабельности), сколько на оптимизацию отношений с окружающей средой (например, рациональности поведения). Чем больше ухудшаются социо-эколого-экономические условия системы, тем более актуальна проблема такой оптимизации. Процесс эволюционного моделирования сложной системы сводится к моделированию его эволюции или к поиску траекторий допустимых (с точки зрения сформулированных критериев рациональности) состояний системы.
Для эволюционного моделирования таких систем необходимо иметь: эффективные критерии оценки вклада каждой подсистемы в эволюцию системы; процедуры построения обобщённых оценок измеряемых параметров системы (“мониторинговых” параметров); процедуры учёта эволюционной сложности системы, его структурной и динамической активности.
Попытаемся предложить некоторый общий подход к построению и применению указанных критериев, оценок и процедур.
Для каждой i-ой (i=1, 2,…, n) подсистемы некоторой системы определим вектор xi =(x1i ,x2i ,…,xmi ) основных параметров (параметров, без которых нельзя описать и изучить функционирование подсистемы в соответствии с целями, структурой и ресурсами системы) и функционал активности или просто активность этой подсистемы. Для всей экосистемы определены вектор состояния системы x и активность системы, а также понятие потенциала (включающего и понятие негапотенциала) системы. Эти функционалы отражают интенсивность процессов в подсистемах и системе в целом.
Пример 1. Пусть среда возобновляет с коэффициентом возобновления ( )= 0 ( )+ 1 ( )x( )>0 (0<t<T, 0<x<X, 0< <T) свои ресурсы. Этот коэффициент зависит, в общем случае, от ресурсоёмкости, ресурсообеспеченности среды. Эволюционный потенциал системы можно определить в виде (a – коэффициент естественного изменения ресурсов):
Возможно вы искали - Шпаргалка: Дидактические материалы по информатике
.
Чем выше темп - тем выше и наоборот. Каким бы хорошим не было бы состояние ресурсов в начальный момент, они будут истощаться при <1. Возможны и другие формы введения потенциала.
Активности подсистем прямо или косвенно взаимодействуют с помощью системной активности s(t). Опишем одну структурно простую аддитивную (модельную) процедуру взаимодействия:
.
Здесь Qi (t) – функционал меры чувствительности отклонений xi от xiopt . Например, Qi (t)=k||xi –xiopt || , k>0.
Похожий материал - Реферат: Клиент TCP
Функции i (t)= i (s(t),si (t)), i (t)= i (s(t),si (t)) должны отражать эволюционируемость системы, удовлетворяя следующим условиям:
периодичности: 0<T< , t: i (t)= i (t+T), i (t)= i (t+T);
затухания при снижении активности: si (t) 0 i 0, i 0;
равновесия и стационарности: выбор (определение) функции i , i осуществляется таким образом, чтобы система имела точки равновесного состояния, а siopt , sopt достигались в стационарных точках xiopt , xopt для малых промежутков времени; для больших промежутков времени система может вести себя хаотично, самопроизвольно порождая регулярные, упорядоченные, циклические взаимодействия (детерминированный хаос).
Рассмотрим более детально модельные ситуации.
Очень интересно - Реферат: ZSync - удобная синхронизация
Пример 2. Рассмотрим модель жизнеспособности предприятия или фирмы. Жизнеспособность предприятия равносильна его выживаемости и сохранению адаптационных, эволюционных возможностей в течение задаваемого промежутка времени и в заданной экономической нише. Предприятие жизнеспособно, если имеет определенный социально-экономический и производственный потенциал. Рассмотрим модель типа модели В. Вольтерра:
где y(x) – отклик системы, соответствующий фактору развития х (например, время); а(х) - эволюционируемость системы, b(x) - лимитирование окружением; с(х) - влияние запаздывания действия x на промежуток времени (лаг) l; w(x) - влияние сезонных или периодических колебаний факторов среды; v - периодичность этих колебаний; d(x) - влияние организационных факторов; f(x—s) – функция, характеризующая темп влияния внутренних факторов от изменения фактора х; s - запаздывание этого влияния; y0 - начальный уровень производства при х=0.
Реальная социально-экономическая система часто стохастична из-за случайного характера факторов окружающей среды и степени их воздействия. Будем считать, что все параметры a, b, c, d, w носят случайный характер, а, следовательно, случайный характер имеют и значения yi (i=0,1,…,n). Нас интересуют оценка T - ожидаемой продолжительности жизнеспособности предприятия и V – эволюционная ёмкость среды, например, экономической ниши.
Параметры модели, как правило, заранее определить или оценить невозможно, поэтому они нуждаются в идентификации по некоторым дополнительным условиям. С этой целью разработан алгоритм идентификации. Проведены компьютерные эксперименты. Приведем некоторые из них.
Эксперимент 1. Для предприятия с начальными данными: y0 =100, a0 =0.005, b0 =0.00004, c0 =0.0004, d0 =0.0004, f0 =0.006 были получены результаты при количестве суток прогнозирования L=5: жизнеспособность предприятия T=6163 суток, дисперсия адекватности модели D=0.00112, потенциал (максимальная емкость экономической ниши) V=11 (предприятий).
Вам будет интересно - Реферат: Java: Управление ресурсами
Эксперимент 2: y0 =0.0000001, a0 =0.2878, b0 =0.1928, c0 =0, d0 =0, f0 =0, L=120, T=219, D=0.09681, V=233 108 .
Эксперимент 3: y0 =100, a0 =0.05, b0 =0.0001, c0 =0.001, d0 =0.001, f0 =0.001, L=10, T=449, D=0.00023, V=21.
Эксперимент 4: y0 =10000, a0 =0.02, b0 =0.00002, c0 =0.00002, d0 =0.00002, f0 =0.0001, L=10, T=1013, D=0.00863, V=470.
Пример 3. Рассмотрим модель управления налоговыми сборами. Динамика изменения прибыли предприятия y(t) может быть описана простейшей моделью В. Вольтерра для c=w=d=0, т.е. моделью
,
Похожий материал - Курсовая работа: Java: Русские буквы и не только…
где а>0 - коэффициент роста прибыли; b>0 - коэффициент сбора налогов с прибыли. Отношение a/b – потенциал, характеризующий финансовую самостоятельность предприятия. Задача состоит в определении величины получаемой на каждом временном шаге прибыли при условии, чтобы суммарные налоговые сборы за фиксированный отрезок времени [0,T] были максимальны.
Разобьем отрезок [0,T] на n равных частей с шагом h. Величина собираемых налогов на шаге i (i=1,2,…,n) равна Gi =ui yi , где параметр ui [0,1] выбирается на каждом шаге. Это возможные удельные налоговые ставки (от прибыли, в долях) для заданного состояния yi , определяющие величину собираемых налогов. Задача оптимального управления: максимизировать функцию
,
где величина прибыли на шаге i+1 определятся соотношениями: