Введение_ 3
Общая характеристика и формулировка второго закона термодинамики 4
Понятие энтропии_ 8
Заключение_ 10
Список литературы_ 11
Введение
Возможно вы искали - Реферат: Выбор теплообменника
В настоящее время теплосиловые и тепловые установки получили широкое распространение в различных отраслях народного хозяйства. На промышленных предприятиях они составляют основную важнейшую часть технологического оборудования.
Наука, изучающая методы использования энергии топлива, законы процессов изменения состояния вещества, принципы работы различных машин и аппаратов, энергетических и технологических установок, называется теплотехникой. Теоретическими основами теплотехники являются термодинамика и теория теплообмена.
Термодинамика опирается на фундаментальные законы (начала), которые являются обобщением наблюдений над процессами, протекающими в природе независимо от конкретных свойств тел. Этим объясняется универсальность закономерностей и соотношений между физическими величинами, получаемых при термодинамических исследованиях.
Первый закон термодинамики характеризует и описывает процессы превращения энергии с количественной стороны и дает все необходимое для составления энергетического баланса любой установки или процесса.
Второй закон термодинамики, являясь важнейшим законом природы, определяет направление, по которому протекают термодинамические процессы, устанавливает возможные пределы превращения теплоты в работу при круговых процессах, позволяет дать строгое определение таких понятий, как энтропия, температура и т.д. В этой связи второй закон термодинамики существенно дополняет первый.
Похожий материал - Реферат: Выпускная работа
В качестве третьего начала термодинамики принимается принцип недостижимости абсолютного нуля.
В теории теплообмена изучаются закономерности переноса теплоты из одной области пространства в другую. Процессы переноса теплоты представляют собой процессы обмена внутренней энергией между элементами рассматриваемой системы в форме теплоты.
Общая характеристика и формулировка второго закона термодинамики
Естественные процессы всегда направлены в сторону достижения системой равновесного состояния (механического, термического или любого другого). Это явление отражено вторым законом термодинамики, имеющим большое значение и для анализа работы теплоэнергетических машин. В соответствии с этим законом, например, теплота самопроизвольно может переходить только от тела с большей температурой к телу с меньшей температурой. Для осуществления обратного процесса должна быть затрачена определенная работа. В связи с этим второй закон термодинамики можно сформулировать следующим образом: невозможен процесс, при котором теплота переходила бы самопроизвольно от тел более холодных к телам более теплым (постулат Клаузиуса, 1850 г.).
Второй закон термодинамики определяет также условия, при которых теплота может, как угодно долго преобразовываться в работу. В любом разомкнутом термодинамическом процессе при увеличении объема совершается положительная работа:
Очень интересно - Реферат: Гидравлический расчёт
,
где l – конечная работа,
v1 и v2 – соответственно начальный и конечный удельный объем;
но процесс расширения не может продолжаться бесконечно, следовательно, возможность преобразования теплоты в работу ограничена.
Непрерывное преобразование теплоты в работу осуществляется только в круговом процессе или цикле.
Вам будет интересно - Реферат: Горизонтальный кожухотрубный испаритель
Каждый элементарный процесс, входящий в цикл, осуществляется при подводе или отводе теплоты dQ, сопровождается совершением или затратой работы, увеличением или уменьшением внутренней энергии, но всегда при выполнении условия dQ= dU+ dL и dq= du+ dl, которое показывает, что без подвода теплоты (dq=0) внешняя работа может совершаться только за счет внутренней энергии системы, и, подвод теплоты к термодинамической системе определяется термодинамическим процессом. Интегрирование по замкнутому контуру дает:
, , так как .
Здесь QЦ и LЦ - соответственно теплота, превращенная в цикле в работу, и работа, совершенная рабочим телом, представляющая собой разность |L1 | - |L2 | положительных и отрицательных работ элементарных процессов цикла.
Элементарное количество теплоты можно рассматривать как подводимое ( dQ>0) и отводимое ( dQ<0) от рабочего тела. Сумма подведенной теплоты в цикле |Q1 |, а сумма отведенной теплоты |Q2 |. Следовательно,
LЦ =QЦ =|Q1 | - |Q2 |.
Похожий материал - Реферат: Деаэрационная колонка
Подвод количества теплоты Q1 к рабочему телу возможен при наличии внешнего источника с температурой выше температуры рабочего тела. Такой источник теплоты называется горячим. Отвод количества теплоты Q2 от рабочего тела также возможен при наличии внешнего источника теплоты, но с температурой более низкой, чем температура рабочего тела. Такой источник теплоты называется холодным. Таким образом, для совершения цикла необходимо иметь два источника теплоты: один с высокой температурой, другой с низкой. При этом не все затраченное количество теплоты Q1 может быть превращено в работу, так как количество теплоты Q2 передается холодному источнику.
Условия работы теплового двигателя сводятся к следующим:
- необходимость двух источников теплоты (горячего и холодного);
- циклическая работа двигателя;