Реферат: Анализ функции фильтрационного сопротивления для неустановившегося притока жидкости (газа) (к несовершенной скважине)

инистерство общего и профессионального образования РФ

Тюменский Государственный Нефтегазовый Университет

Кафедра РЭНиГМ


Реферат


«Анализ функции фильтрационного сопротивления для неустановившегося притока жидкости (газа) к несовершенной скважине»


Выполнил студент

Группы НГР-96-1


Возможно вы искали - Реферат: Архитектура квантовых компьютеров

Принял профессор

Телков А. П.


Тюмень 1999 г.

Рассмотрим функция (F) которая есть функ­ция пяти параметров F=F (f0, rc, h, , t*), каждый из которых — безразмерная ве­личина, соответственно равная

(1)

Похожий материал - Реферат: Ассортимент и показатели качества ржано-пшеничного хлеба. Сравнительная характеристика показателей качества Бородинского хлеба разных производителей

где r — радиус наблюдения;

x — коэффициент пьезопроводности;

Т — полное время наблюдения;

h — мощность пласта;

b — мощность вскрытого пласта;

Очень интересно - Реферат: Батареи и элементы питания (Аккумуляторы)

z — координата;

t — текущее время.

Названная функция может быть ис­пользована для определения понижения (повышения) давления на забое скважи­ны после ее пуска (остановки), а также для анализа распределения потенциала (давления) в пласте во время работы скважины.

Уравнение, описывающее изменение давления на забое, т. е. при =h; r=rc или r=rc, имеет вид

(2)

Вам будет интересно - Реферат: Безкорпусная герметизация полупроводниковых приборов

где безразмерное значение депрессии связано с размерным следующим соот­ношением

где (3)

здесь Q — дебит;

 — коэффициент вязкости;

k — коэффициент проницаемости.

Похожий материал - Реферат: Бетоны

Аналитическое выражение F для оп­ределения изменения давления на за­бое скважины запишем в виде

(4)


Уравнение (2) в приведенном виде не может использоваться для решения инженерных задач по следующим при­чинам: во-первых, функция (4) сложна и требует табулирования; во-вторых, вид функции исключает возможность выделить время в качестве слагаемого и свести решение уравнения (2) к урав­нению прямой для интерпретации кри­вых восстановления (понижения) давле­ния в скважинах традиционными мето­дами. Чтобы избежать этого, можно по­ступить следующим образом.

В нефтепромысловом деле при гид­родинамических исследованиях скважин широко используется интегрально-пока­зательная функция. Несовершенство по степени вскрытия пласта в этом случае учитывается введением дополнительных фильтрационных сопротивлений (C1), взятых из решения задач для установившегося притока. В соответствии с этим уравнение притока записывается в виде