Введение
Уравнение движения математического маятника
Период колебаний
Выводы
Литература
Возможно вы искали - Реферат: Математическое моделирование физических задач на ЭВМ
Введение
Сейчас уже невозможно проверить легенду о том, как Галилей, Стоя на молитве в соборе, внимательно наблюдал за качением бронзовых люстр. Наблюдал и определял время, затраченное люстрой на движение туда и обратно. Это время потом назвали периодом колебаний. Часов у Галилея не было, и, чтобы сравнить период колебаний люстр, подвешенных на цепях разной длины, он использовал частоту биения своего пульса.
Маятники используют для регулировки хода часов, поскольку любой маятник имеет вполне определённый период колебаний. Маятник находит также важное применение в геологической разведке. Известно, что в разных местах земного шара значения g различны. Различны они потому, что Земля — не вполне правильный шар. Кроме того, в тех местах, где залегают плотные породы, например некоторые металлические руды, значение g аномально высоко. Точные измерения g с помощью математического маятника иногда позволяют обнаружить такие месторождения.
Уравнение движения математического маятника
Математическим маятником называется тяжёлая материальная точка, которая двигается или по вертикальной окружности (плоский математический маятник), или по сфере (сферический маятник). В первом приближении математическим маятником можно считать груз малых размеров, подвешенный на нерастяжимой гибкой нити.
Похожий материал - Реферат: Материалы к контрольной по биофизике (ЯМР, МРТ)
Рассмотрим движение плоского математического маятника по окружности радиуса l с центром в точке О (рис. 1). Будем определять положение точки М (маятника) углом отклонения j радиуса ОМ от вертикали. Направляя касательную M t в сторону положительного отсчёта угла j, составим естественное уравнение движения. Это уравнение образуется из уравнения движения
mW =F +N , (1)
где F — действующая на точку активная сила, а N — реакция связи.
Рисунок 1
Уравнение (1) мы получили по второму закону Ньютона, который является основным законом динамики и гласит, что производная по времени от количества движения материальной точки равна действующей на неё силе, т. е.
. (2)
Считая массу постоянной, можно представить предыдущее уравнение в виде
Очень интересно - Реферат: Материалы с высокой проводимостью
или ,
где W есть ускорение точки.
Итак уравнение (1) в проекции на ось t даст нам одно из естественных уравнений движения точки по заданной неподвижной гладкой кривой:
или .
В нашем случае получим в проекции на ось t
Вам будет интересно - Реферат: Материальная структура Вселенной и элементарных частиц
,
где m есть масса маятника.
Так как или , отсюда находим
.
Сокращая на m и полагая
, (3)
будем окончательно иметь:
,
Похожий материал - Реферат: Метод меченых атомов
,
,
. (4)
Рассмотрим сначала случай малых колебаний. Пусть в начальный момент маятник отклонён от вертикали на угол j и опущен без начальной скорости. Тогда начальные условия будут:
при t = 0, . (5)
Из интеграла энергии: