Курсовая работа: Поверхности второго порядка

Поверхность второго порядка - геометрическое место точек, декартовы прямоугольные координаты которых удовлетворяют уравнению вида

a11 х2 + а22 у2 + a33 z2 + 2a12 xy + 2a23 уz + 2a13 xz + 2а14 x + 2а24 у+2а34 z +а44 = 0 (1)

в котором по крайней мере один из коэффициентов a11 , а22 , a33 , a12 , a23 , a13 отличен от нуля.

Уравнение (1) мы будем называть общим уравнением поверхности второго порядка.

Очевидно, поверхность второго порядка, рассматриваемая как геометрический объект, не меняется, если от данной декартовой прямоугольной системы координат перейти к другой декартовой системе координат. Отметим, что исходное уравнение (1) и уравнение, полученное после преобразования координат, алгебраически эквивалентны.


1. Инварианты уравнения поверхности второго порядка.

Возможно вы искали - Реферат: Конус, и все что с ним связано

Справедливо следующее утверждение.

являются инвариантами уравнения (1) поверхности второго-порядка относительно преобразований декартовой системы координат.

Доказательство этого утверждения приведено в выпуске «Линейная алгебра» настоящего курса.

§ 2. Классификация поверхностей второго порядка

1. Классификация центральных поверхностей. Пусть S — центральная поверхность второго порядка. Перенесем начало координат в центр этой поверхности, а затем произведем стандартное упрощение уравнения этой поверхности. В результате указанных операций уравнение поверхности примет вид

a11 х2 + а22 у2 + a33 z2 + а44 = 0 (2)

Похожий материал - Реферат: Золотое сечение

Так как инвариант I3 для центральной поверхности отличен от ноля и его значение, вычисленное для уравнения (2) , равно a11 • а22 • a33 , то коэффициенты a1122 , a33 удовлетворяют условию :


???????? ????????? ?????? :

1. Коэффициенты a1122 , a33 одного знака, а коэффициент а44 отличен от нуля. В этом случае поверхность S называется эллипсоидом.

Если коэффициенты a1122 , a33 , а44 одного знака, то левая часть (2) ни при каких значениях х, у, z не обращается в нуль, т. е. уравнению поверхности S не удовлетворяют координаты никакой точки. В этом случае поверхность S называется мнимым эллипсоидом.

Если знак коэффициентов a1122 , a33 противоположен знаку коэффициента а44 , то поверхность S называется вещественным эллипсоидом. В дальнейшем термином «эллипсоид» мы будем называть лишь вещественный эллипсоид.

Обычно уравнение эллипсоида записывают в канонической форме. Очевидно, числа

Очень интересно - Курсовая работа: Исследование распределения температуры в тонком цилиндрическом стержне

положительны. Обозначим эти числа соответственно а2 , b2 , с2 . После несложных преобразований уравнение эллипсоида (2) можно записать в следующей форме:

Уравнение (3) называется каноническим уравнением эллипсоида.

Если эллипсоид задан своим каноническим уравнением (3), то оси Ох, Оу и Оz. называются его главными осями.

Вам будет интересно - Реферат: Эконометрика

2. Из четырех коэффициентов a1122 , a33 , а44 два одного знака, а два других—противоположного. В этом случае поверхность S называется однополостным гиперболоидом.

Обычно уравнение однополостного гиперболоида записывают в канонической форме. Пусть, ради определенности, a11 > 0, а22 > 0, a33 < 0, а44 < 0. Тогда числа

положительны. Обозначим эти числа соответственно а2 , b2 , с2 . После несложных преобразований уравнение (2) однополостного гиперболоида можно записать в следующей форме:

Похожий материал - Реферат: Учебники математики в прошлом, настоящем и будущем

Уравнение (4) называется каноническим уравнением однополостного гиперболоида.

Если однополостный гиперболоид задан своим каноническим уравнением (4), то оси Ох, Оу и Oz называются его главными осями.

3. Знак одного из первых трех коэффициентов a1122 , a33 , а44 противоположен знаку остальных коэффициентов. В этом случае поверхность S называется двуполостным гиперболоидом.

Запишем уравнение двуполостного гиперболоида в канонической форме. Пусть, ради определенности, a11 < 0, а22 < 0, a33 > 0, а44 < 0. Тогда :