Антагонистические игры, которые мы изучали ранее, описывают конфликты весьма частного вида. Более того, для большинства имеющих место в реальной жизни конфликтов антагонистические игры либо вовсе не могут считаться приемлемыми, адекватными описаниями, либо, в лучшем случае, могут рассматриваться как первые грубые приближения.
Во-первых, антагонистические игры никак не затрагивают своими описаниями конфликты с числом строк, большим чем два. В месте с тем, такие многосторонние конфликты не только встречаются в действительности, но являются принципиально более сложными, чем конфликты с двумя участниками, и даже не поддаются сведению к последним.
Во-вторых, даже в конфликтах с двумя участниками интересы сторон вовсе не обязаны быть противоположными; во многих конфликтах такого рода случается так, что одна из ситуаций оказывается предпочтительнее другой для обоих участников.
В-третьих, даже если любые две ситуации сравниваются игроками по их предпочтительности противоположным образом, различие разностей в оценках этой предпочтительности оставляет место для соглашений, компромисов и коопераций.
Наконец, в-четвёртых, содержательная острота конфликта не обязательно соответствует его формальной антагонистичности. Например, при встрече двух боевых единиц воюющих сторон (скажем, танков) обоюдное их стремление уничтожить друг друга не выражает антогонистичности конфликта: в антогонистическом конфликте цели сторон оказываются строго противоположными, и стремлению одной стороны уничтожить другую противоположным будет стремление избежать уничтожения.
Возможно вы искали - Реферат: Свет, фотоны, скорость света, эфир и другие «банальности»
В качестве примера БАИ рассмотрим:
1. Игры двух лиц с произвольной суммой.
Бескоалиционные игры.
В конечной бескоалиционной игре двух игроков (КБИДИ)каждый из них делает один ход выбирает одну стратегию из имеющегося у него конечного числа стратегий, и после этого он получает свой выигрыш согласно определённым для каждого из них матрицами выигрышей. Другими словами КБИДИ полностью определяется двумя матрицами выигрышей для двух игроков. Поэтому такие игры называются биматричными. Пусть у игрока 1 имеется m стратегий, i =, у игрока 2 имеется n стратегий, j =. Выигрыши игроков 1 и 2 соответственно задаются матрицами
А = , В =
Будем по-прежнему считать полный набор вероятностей x = (x1, ..., xm) применения 1 игроком своих чистых стратегий смешанной стратегией игрока 1, и у = (y1, ..., yn) смешанной стратегией игрока 2. тогда средние выигрыши игроков 1 и 2 соответственно равны
Похожий материал - Доклад: Олаф Ремер и скорость света
Ситуация равновесия для биматричной игры составляет пару (x,y) таких смешанных стратегий игроков 1 и 2, которые удовлетворяют неравенствам :
или
Очень интересно - Реферат: Исследование логических элементов
Для определения ситуаций равновесия необходимо решить систему неравенств (1) и (2) ( и ) относительно неизвестных x = (x1, ..., xm) и у = (y1, ..., yn) при условиях
, , xi³ 0 (i =), yj³ 0 (j =).
Теорема (Нэша). Каждая биматричная игра имеет по крайней мере одну ситуацию равновесия.
В качестве примера рассмотрим случай, когда каждый игрок имеет две чистые стратегии. В этом случае матрицы A и B равны :
A = , B = .
Вам будет интересно - Реферат: Эволюция представлений о Вселенной
Смешанные стратегии для игроков 1 и 2 имеют вид :
(x, 1 x), (y, 1 y) 0 £ x £ 1; 0 £ y £ 1,
а средние выигрыши равны :
E1(A,x,y) = xA = (x; 1- x)=
= (a11 a12 a21 + a22) xy + (a12 - a22) x + (a21 - a22) y + a22.
Похожий материал - Реферат: Об основаниях теории множеств
E2(B,x,y) = xB = (x; 1- x)=
= (b11 - b12 - b21 + b22) xy + (b12 - b22) x + (b21 - b22) y + b22.
Условия и будут выглядеть
£ E1(A,x,y),