В предлагаемой статье речь идет о нестандартных приемах решения уравнений, основанных на простых и хорошо известных учащимся свойствах и характеристиках функций, таких как непрерывность, монотонность наибольшее и наименьшее значение. Используя предлагаемые автором задачи и методы их решения, учитель сможет сформировать у учащихся более широкий взгляд на область применения различных этих свойств. Ведь не секрет, что в стандартном курсе школьной математики свойства функций применяются в основном для построения их графиков.
В соответствии с обязательным минимумом содержания среднего (полного) общего образования, утвержденным Министерством образования РФ (пр. №56 от 30.06.99), все учащиеся должны знать три основных метода решения уравнений:
Разложение на множители,
Замена переменных,
Использование свойств функций.
Возможно вы искали - Статья: Применение движений к решению задач
Рассмотрим на конкретных примерах сущность третьего метода. Этот метод применяется тогда, когда уравнение F(x)=G(x) в результате преобразований или замены переменных не может быть приведено к тому или иному стандартному уравнению, имеющему определенный алгоритм решения. Продемонстрируем использование некоторых свойств функций к решению уравнений указанного выше вида в случае, когда F(x) и G(x) - любые элементарные функции.
Использование области определения и области значения функций
Решить уравнение ![]()
Решение: Множество решений этого уравнения совпадает с областью определения функции
. Областью определения этой функции (в соответствии с определением степени с рациональным показателем) является множество положительных действительных чисел.
Ответ: x>0.
Похожий материал - Статья: Применение подобия к решению задач
Решить уравнение sinxctgx=cosx.
Решение: Множество решений этого уравнения совпадает с областью определения уравнения. Область определения уравнения – это общая часть областей определения функций, входящих в уравнение. Следовательно, множество решений уравнения – множество всех действительных чисел, кроме x=kp, где kÎZ.
Ответ: x¹kp, где kÎZ.
Решить уравнение
.
Решение: У этого уравнения нет корней, так как область значений функции
при x³1 есть множество неотрицательных чисел, а функция
при всех x принимает отрицательные значения.
Очень интересно - Статья: Использование графического метода при изучении электрического резонанса в курсе физики средней
Решить уравнения:
а) ![]()
б) ![]()
в) ![]()
г) ![]()
Вам будет интересно - Статья: Две замечательные теоремы планиметрии
д) ![]()
е) ![]()
Ответы: а) x>0, x¹1; б) êxê£1; в) x¹0; г) x³0; д) Нет корней; е) x¹0.
Использование экстремальных значений функций
Сущность этого способа решения уравнений в том, что оцениваются правая и левая части уравнения F(x)=G(x) и, если одна из функций принимает значение не меньше некоторого числа А, а другая – не больше этого же числа А, то данное уравнение заменяется системой уравнений: 
Похожий материал - Статья: Способ доказательства теоремы Ферма в общем виде с помощью методов элементарной математики
Этот способ может быть применен к решению следующих уравнений:
в обеих частях уравнения стоят функции разного вида;
в одной части уравнения функция, ограниченная сверху, а в другой – ограниченная снизу;
в одной части уравнения стоит функция, ограниченная сверху или снизу, а в другой – конкретное число.