АНАЛИЗ РЯДОВ РАСПРЕДЕЛЕНИЯ
Содержание
Введение
1. Характеристики центра распределения
1.1 Мода
Возможно вы искали - Лабораторная работа: Анализ эмпирического распределения
1.2 Медиана
1.3 Показатели дифференциации
2. Характеристики вариации
2.1 Абсолютные характеристики вариации
2.1.1 Расчет дисперсии способом моментов
Похожий материал - Лабораторная работа: Аналіз обсягу інвестицій в основний капітал за регіонами у 2005р.
2.1.2 Расчет дисперсии альтернативного признака
2.1.3 Межгрупповая дисперсия. Правило сложения дисперсий
2.2 Относительные характеристики вариации
3. Теоретические кривые распределения
3.1 Нормальное распределение
Очень интересно - Контрольная работа: Аппарат теории двойственности для экономико-математического анализа. Анализ одномерного временного ряда
3.2 Выравнивание эмпирического распределения по кривой нормального распределения
3.3 Критерии согласия
3.4 Характеристики неравномерности распределения
Введение
Ряд распределения (т.е. упорядоченное распределение единиц изучаемой совокупности на группы по определенному варьирующему признаку) характеризует состав, структуру совокупности по определенному признаку. Его строят для того, чтобы выявить характер распределения единиц совокупности по варьирующему признаку, определить закономерности в этом распределении.
Для анализа ряда распределения используют ряд статистических характеристик:
Вам будет интересно - Контрольная работа: Балансовый метод планирования
частотные характеристики;
характеристики центра распределения;
характеристики вариации;
характеристики неравномерности распределения.
Частотные характеристики ряда распределения, а именно, частоты и частости (или другое название - доля ), накопленные (или кумулятивные) частоты и частости , абсолютная и относительная плотность распределения, были рассмотрены в теме "Сводка и группировка статистических данных".
1. Характеристики центра распределения
Похожий материал - Курсовая работа: Безработица: основные определения и измерение. Потоки, запасы, утечки, инъекции в модели
К характеристикам центра распределенияотносят среднюю, моду и медиану. Эти характеристики принято также называть структурными средними, они определяют вид полигона и гистограммы, эмпирического закона распределения.
В качестве средней для характеристики центра распределениячаще всего используют среднюю арифметическую простую или взвешенную.
1.1 Мода
Мода (Мо) - это варианта, которая чаще всего встречается в изучаемой совокупности. Мода не зависит от крайних значений вариант и может применяется для характеристики центра в рядах распределения с неопределенными границами.
В дискретном вариационном ряду мода определяется визуально и равна варианте с наибольшей частотой или частостью. Данные распределения рабочих по стажу работы (см. лекцию "Сводка и группировка статистических данных") показывают, что наибольшее рабочих имеют стаж работы 4 года, т.е. варианта, равная 4, является модой признака. Мо = 4.