Контрольная работа: Основы решения эконометрических задач

y = 1/ (11+10,.45x1 – 9,44 x2 + 3.33 x3 – 1.37x4 + e)

y = e45.45+100x + e

Покажите, где здесь результирующая, а где объясняющие переменные. Что обозначает е в уравнениях регрессии?

Виды регрессии обычно называются по типу аппроксимирующих функций: полиномиальная, экспоненциальная, логарифмическая и т.п.

Таким образом, можно говорить о том, что

Возможно вы искали - Реферат: Особенности экономического моделирования

y = 12,5 – 1,44 x1 + 5 x2 – 2.27 x3 + e – это полиномиальная регрессия

y – результирующая переменная

x1, x2, x3 - объясняющие переменные

e – ошибка регрессии

y = 1/ (11+10,.45x1 – 9,44 x2 + 3.33 x3 – 1.37x4 + e) - это гипербола

Похожий материал - Лабораторная работа: Оценка запаса прочности бизнеса с использованием модулей "Анализ чувствительности", "Анализ по методу Монте-Карло" и "Анализ безубыточности"

y – результирующая переменная

x1, x2, x3, х4 - объясняющие переменные

e – ошибка регрессии

y = e45.45+100x + e – это экспоненциальная регрессия

y – результирующая переменная

Очень интересно - Лабораторная работа: Параллельное и последовательное моделирование

x - объясняющая переменные

e – ошибка регрессии

Задание 2

1. Дайте определение парной регрессии.

Аналитическое выражение связей между признаками может быть представлена виде уравнений регрессии:

Вам будет интересно - Курсовая работа: Параметрическое исследование систем управления

yx = a0+a1x

где х – значение факторного признака

у – значение результативного признака (эмпирические)

ух – теоретические значения результативного признака, полученные по уравнению регрессии.

а0 и а1 – это коэффициенты регрессии, которые определяются путем решения следующей системы уравнений:

Похожий материал - Контрольная работа: Парная и множественная регрессия и корреляция

na0+a1∑x = ∑y

a0∑x+a1∑x = ∑xy2

В основе решения данной системы уравнений лежит метод наименьших квадратов, сущность которого заключается в минимизации суммы квадратов отклонений эмпирических значений признака от теоретических, полученных по уравнению регрессии:

∑(yi-yx)2 → min