Дипломная работа: Понятие и классификация систем массового обслуживания

Переходы системы S в различные состояния удобно изображать с помощью графа состояний (рис. 1).

Рисунок 1 – Пример размеченного графа состояний

Вершины графа S1 , S2 , S3 обозначают возможные состояния системы. Стрелка, направленная из вершины Si в вершину Sj обозначает переход ; число, стоящее рядом со стрелкой, обозначает величину вероятности этого перехода. Стрелка, замыкающаяся на i-той вершине графа, обозначает, что система остается в состоянии Si с вероятностью, стоящей у стрелки.

Графу системы, содержащему n вершин, можно поставить в соответствие матрицу NxN, элементами которой являются вероятности переходов pij между вершинами графа. Например, граф на рис. 1 описывается матрицей P:

Возможно вы искали - Контрольная работа: Постановка и основные свойства транспортной задачи

называемой матрицей вероятностей переходов. Элементы матрицы pij удовлетворяют условиям:

(1)

(2)

Элементы матрицы pij – дают вероятности переходов в системе за один шаг. Переход

Похожий материал - Контрольная работа: Построение двухфакторной модели, моделей парной линейной прогрессии и множественной линейной регрессии

Si – Sj за два шага можно рассматривать как происходящий на первом шаге из Si в некоторое промежуточное состояние Sk и на втором шаге из Sk в Si . Таким образом, для элементов матрицы вероятностей переходов из Si в Sj за два шага получим:

В общем случае перехода за m шагов для элементов матрицы вероятностей переходов справедлива формула:


(3)

Получим два эквивалентных выражения для :

Очень интересно - Контрольная работа: Построение и анализ функции спроса на товар

Пусть система S описывается матрицей вероятностей переходов Р:

Если обозначить через Р(m) матрицу, элементами которой являются рi вероятности переходов из Si в Sj за m шагов, то справедлива формула

Вам будет интересно - Контрольная работа: Применение методов линейного программирования для оптимизации стоимости перевозок

,

где матрица Рm получается умножением матрицы P саму на себя m раз.

Исходное состояние системы характеризуется вектором состояния системы Q(qi ) (называемым также стохастическим вектором).


где qj - вероятность того, что исходным состоянием системы является Sj состояние. Аналогично (1) и (2) справедливы соотношения

Похожий материал - Дипломная работа: Прогнозування стану житлового фонду міста (на прикладі м. Тернопіль)

Обозначим через

вектор состояния системы после m шагов, где qj – вероятность того, что после m шагов система находится в Si состоянии. Тогда справедлива формула