Теорема 5.9. Пусть и все
выпуклы и функции
удовлетворяют условию регулярности Слейтера. Вектор
является решением задачи НП (5.3.1), (5.3.2) тогда и только тогда, когда существует такой вектор
, что
(5.3.30)
и
(5.3.31)
Теорема Куна-Таккера . Пусть функции , имеют непрерывные частные производные на некотором открытом множестве
, содержащем точку
. Если
является точкой минимума функции
при ограничениях
, удовлетворяющих условию регулярности в виде линейной независимости векторов
, то существуют такие неотрицательные множители Лагранжа
, что
Возможно вы искали - Контрольная работа: Теория вероятностей
(5.3.15)
(5.3.16)
Определим функцию Лагранжа следующим образом:
(5.3.17)
Тогда теорему Куна-Таккера можно записать в виде
Похожий материал - Реферат: Теория измерений
(5.3.18)
(5.3.19)
(5.3.20)
Заметим, что множители Лагранжа в задаче НП с ограничениями-равенствами являются знаконеопределенными, тогда как в теореме Куна-Таккера они должны быть положительными.
Каждой задаче линейного программирования соответствует двойственная задача. Двойственная задача по отношению к исходной задаче строится по следующим правилам:
Очень интересно - Контрольная работа: Уравнения регрессии
· Если исходная задача ставится на максимум, то двойственная ставится на минимум и наоборот.
· Коэффициенты целевой функции исходной задачи становятся правыми частями ограничений двойственной задачи. Правые части ограничений исходной задачи становятся коэффициентами целевой функции двойственной задачи.
· Если A-матрица коэффициентов исходной задачи, то транспонированная матрица T A будет матрицей коэффициентов двойственной задачи.
· В задаче на максимум все ограничения имеют знак ≤ (=), а в задаче на минимум все ограничения имеют знак ≥ .
· Число переменных в двойственной задаче равно числу ограничений в исходной задаче. Каждому ограничению исходной задачи соответствует переменная двойственной задачи. Если ограничение исходной задач имеет знак (≥ ), то соответствующая переменная двойственной задачи неотрицательна. Если ограничение имеет знак (=), то соответствующая переменная двойственной задачи может принимать положительные и отрицательные значения и наоборот.
Градиентные методы гладкой оптимизации. Общая идея градиентного спуска (подъема). Пропорциональный градиентный метод. Полношаговый градиентный метод. Метод сопряженных градиентов.
Вам будет интересно - Контрольная работа: Финансовая математика 2
Методы отыскания экстремума, использующие производные, имеют строгое математическое обоснование. Известно, что при отыскании экстремума не существует лучшего направления, чем движение по градиенту.
Градиентом дифференцируемой функции f(x) в точке х [0] называется n -мерный вектор f(x [0]) , компоненты которого являются частными производными функции f(х), вычисленными в точке х [0], т. е.
f'(x [0]) = (дf(х [0])/дх 1 , …, дf(х [0])/дхn )T .
Этот вектор перпендикулярен к плоскости, проведенной через точку х [0] , и касательной к поверхности уровня функции f(x), проходящей через точку х [0] .В каждой точке такой поверхности функция f(x) принимает одинаковое значение. Приравнивая функцию различным постоянным величинам С0 , С1 , ... , получим серию поверхностей, характеризующих ее топологию
Вектор-градиент направлен в сторону наискорейшего возрастания функции в данной точке. Вектор, противоположный градиенту (-f’(х [0])) , называется антиградиентом и направлен в сторону наискорейшего убывания функции. В точке минимума градиент функции равен нулю. На свойствах градиента основаны методы первого порядка, называемые также градиентным и методами минимизации. Использование этих методов в общем случае позволяет определить точку локального минимума функции.
Похожий материал - Реферат: Финансовая рента
Очевидно, что если нет дополнительной информации, то из начальной точки х [0] разумно перейти в точку х [1], лежащую в направлении антиградиента - наискорейшего убывания функции. Выбирая в качестве направления спуска р [k ] антиградиент -f’(х [k]) в точке х [k ], получаем итерационный процесс вида
х [k+ 1] = x [k ]-ak f'(x [k]) , а k > 0; k =0, 1, 2, ...
В координатной форме этот процесс записывается следующим образом:
xi [k +1]=х i [k ] - ak f(x [k]) /
xi